
1

Traffic Jam Probability Estimation Based on
Blockchain and Deep Neural Networks

Vikas Hassija, Vatsal Gupta, Sahil Garg and Vinay Chamola

Abstract—The exponential surge in the number of vehicles on
the road has aggravated the traffic congestion problem across
the globe. Several attempts have been made over the years to
predict the traffic scenario accurately and consequently avoiding
further congestion. Crowdsourcing has come forward as one
of the most adopted methods for predicting traffic intensity
using live data. However, the privacy concerns and the lack of
motivation for the live users to help in the traffic prediction
process have rendered existing crowdsourcing models inefficient.
Towards this end, we present an advanced blockchain-based
secure crowdsourcing model. Not only does our model ensure
privacy preservation of the users, but by incorporating a revenue
model, it also provides them with an incentive to participate in
the traffic prediction process willingly. For accurate and efficient
traffic jam probability estimation, our work proposes a neural
network-based smart contract to be deployed onto the blockchain
network. The results reveal that the proposed model is highly
efficient in terms of attaining high participation and consequently
obtaining highly accurate predictions.

Index Terms—Deep Learning, Neural Networks, Long Short
Term Memory, Traffic Jam, Ethereum, Blockchain.

I. INTRODUCTION

In recent times, road traffic congestion has become an
everyday affair, especially in metropolitan areas. Not only
does it cause direct monetary losses in terms of fuel, and
environmental losses in terms of increasing carbon footprint,
but it also leads to various indirect losses [1]. Such losses
include the loss of time, lack of productivity, rising stress
levels among drivers, and unnecessary disputes among drivers
arising out of frustration [2]. As per the Mobility Lab Report
- 2019, each driver in New York City had to incur direct
and indirect losses amounting to 2, 982 dollars on average
[3]. Other than the lack of well-planned roads and reckless
driving, accidents, demonstrations, marathons and other events
are primarily responsible for traffic jams [4]. Although it may
be beneficial to a certain extent to examine historical data
for live traffic congestion prediction, it alone can not provide
the best insights into the live traffic situation. There is a
need to incorporate live data-based prediction models in traffic
congestion prediction to yield accurate results.

Vikas Hassija and Vatsal Gupta are with the Department of Computer
Science and IT, JIIT, Noida, India 201304 (e-mail: vikas.hassija@jiit.ac.in,
vatsalgupt99@gmail.com).

Vinay Chamola is with the Department of Electrical and Electron-
ics Engineering, BITS-Pilani, Pilani Campus, India 333031 (e-mail:
vinay.chamola@pilani.bits-pilani.ac.in).

S. Garg is with the Electrical Engineering Department, École de technologie
supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada. (email:
sahil.garg@ieee.org)

Digital Object Identifier: XXXXXXXXXXXX

By employing the use of various tools, including incident
detection, incident verification, incident response, and incident
communication, intelligent transportation systems (ITS) play a
significant role in mitigating traffic congestion [5]. In addition
to ITS, various other efforts are being made in industry and
academia to predict and mitigate traffic congestion problems
effectively. In recent years, crowdsourcing has emerged as a
prominent model for live traffic scenario estimation and real-
time navigation [6]. Several crowdsourcing architectures have
been proposed by various research and industry groups to solve
urban traffic problems effectively [7].

The concept of crowdsourcing originated in the 18th century
when a substantial cash prize was offered to anyone who could
succeed in developing a method for determining a vessel’s
length while at sea [8]. The core idea behind crowdsourcing
is to use the talent, expertise and knowledge that is available
to the public to solve specific problems. Wikipedia, launched
in 2001 by Wales and Sanger, is an excellent example of an
application using the concept of crowdsourcing. The collective
knowledge of a large group of people can help in solving
problems faster and more efficiently. Furthermore, most peo-
ple directly deal with the problem under consideration and
therefore know the exact pitfalls, corner-cases, and possible
solutions. The use of crowdsourcing for traffic congestion
prediction was first adopted by an Israeli start-up company
named Waze in 2013 [9], which was later acquired by Google
for 1.1 billion US dollars [10], [11].

Crowdsourcing, with all its benefits, faces two significant
challenges - 1) the user privacy issues, and 2) the lack of
motivation among users to participate. In existing crowd-
sourcing models, the participants have to share their private
information such as their name, phone number and location
information. Sensitive nature of such information makes it
prone to malicious attacks and consequently compromises
the privacy of the users. Crowdsourcing is one of the most
significant components used in Google Maps for live traffic
congestion prediction [12]. In such applications, the users are
forced to share their location information in exchange for live
traffic data. The location information shared by the users is
then used to predict traffic conditions at different locations.
Besides being able to look up routes and location, users have
no other incentive to participate in such models.

Blockchain is a highly promising technology to resolve the
issues limiting user participation in crowdsourcing projects as
mentioned above. Blockchain is a highly secure, immutable,
transparent, and privacy-preserving distributed ledger technol-
ogy [16]–[20]. Initially, in 2009, the concept of blockchain was
introduced for use as a digital currency system, but gradually,

2

TABLE I: Related works on traffic jam prediction and mitigation
References Contributions Strengths Weaknesses

Bo Xie et al. [2] Urban cell transmission model (UCTM)
to evaluate traffic jam. Simulation of urban traffic is done. Only a mathematical model is presented.

Jiancheng Long [5] Control strategies for incident based traffic
jam in a two-way grid network. Spatial topology of jam propagation is used. Lack of prevention and prediction mechanisms.

Zuchao Wang et al. [13] Visual traffic jam analysis based
on trajectory data. Better accuracy in traffic jam detection. Only the vehicle speed is used to detect jam.

Myounggyu Won [14] Vehicle to vehicle communication to mitigate
phantom jam condition. ML-based algorithms are used to detect jam. The behavior of investors and developers

is not considered.

Kazuhiro Saitou et al. [15] Real-time traffic prediction for lagrangian traffic 20% improvement in the prediction results. The live information from users is not used
to improve the predictions.

Our proposed approach
Proposed a blockchain-based crowdsourcing
platform to predict real-time traffic jam probability
with a monetary incentive for the participants.

A distributed network that captures the interest
of all the participating nodes.

Large number of frequent transactions
cannot be supported (which is an inherent
weakness of blockchain).

with the innovation of ethereum, blockchain technology has
laid its roots in several domains [21]. The detailed system
model involving blockchain network and crowdsourcing based
traffic jam probability estimation is discussed in section III.
The major contributions of the work are discussed as follows:

• A peer-to-peer, open network of vehicles is proposed
where vehicles can securely share and request for the
live traffic scenario at a particular location.

• An ethereum based smart contract is deployed for vali-
dating and storing the information shared by the users in
the network.

• A neural network-based model is proposed to calculate
the actual probability of traffic jam at a particular location
based on live and historical data.

• An incentive model is proposed to increase the motivation
of the users to participate in the crowdsourcing model for
traffic jam probability estimation.

• Simulation results demonstrate that our proposed model
achieves high participation from users, thereby giving
better estimations.

II. RELATED WORK

In recent times, research on blockchain-based crowdsourc-
ing has become an emerging trend with the explosive growth
of Blockchain 2.0 [22]–[24]. The authors of [25] have inves-
tigated the benefits that blockchain technology can bring to
crowdsourcing systems by analyzing real-life crowdsourcing
use cases. Ming Li et al. [26] have proposed a general-purpose
decentralized crowdsourcing framework - CrowdBC, based
on blockchain. Their model enables a crowd of workers to
solve a requester’s task without depending on any centralized
party. Xiaolong Xu et al. [27] have also proposed a general-
purpose blockchain-powered crowdsourcing model for privacy
preservation in a mobile environment. Although numerous
blockchain-based crowdsourcing architectures have surfaced
in recent years, none of them has been implemented in the
domain of traffic jam prediction and mitigation.

While blockchain-based crowdsourcing has not been
adopted in the domain of traffic jam prevention and mitigation,
several attempts employing different architectures have been
made in the industry and academia to develop strategies
facilitating smooth movement of traffic [4], [28]. Numerous
researchers have proposed the use of modern technologies such
as artificial intelligence, cloud computing and fog computing
for traffic jam prevention. Bo Xie et al. [2] have proposed an

Urban Cell Transmission Model (UCTM) to evaluate urban
traffic jam condition. The model takes into account the density
of each cell which consists of three different directions for
inflow and outflow. Jiancheng Long et al. [5] have proposed
control strategies for incident-based traffic jams in a two-
way grid network. The control strategies proposed by the
authors include diamond control, single-line control, area
control, and multiline control. Zuchao Wang et al. [13] have
proposed a scheme for visual traffic jam analysis based on
trajectory data. The authors have proposed various strategies
to derive accurate traffic jam information. The authors of [29]
have formulated the traffic allocation problem for multipath
routing as a lossy network flow optimization problem using the
portfolio selection theory. The authors of [30] have proposed
a jam absorption driving (JAD) strategy to guide the vehicles
in a way that reduces traffic oscillations. Myounggyu Won
et al. [14] have used the concept of the vehicle to vehicle
communication to mitigate phantom jam conditions. A three-
phase traffic theory and fuzzy interference system have been
used by the authors to capture the traffic jam dynamics
accurately.

Various researchers have employed the use of machine
learning and game theory strategies for traffic jam detection
and mitigation [31]. Kazuhiro Saitou et al. [15] have pro-
posed a real-time traffic prediction and probing strategy for
lagrangian traffic data. The authors of [32] propose an AI-
based malicious network traffic detection in VANETs to tackle
the malicious entities that deliberately want to cause traffic
congestion. The authors use statistical network traffic analysis
with data mining to detect malicious entities in vehicular ad-
hoc networks. The authors of [33] use spatiotemporal corre-
lation for discrimination and prediction of traffic congestion.

Although there have been various works in the direction of
traffic jam detection and mitigation, most of them make use
of prediction algorithms based on historical traffic data. The
reasons and conditions leading to a traffic jam are dynamic
and unpredictable. In such situations, the best way to know
the live traffic situation at a particular location is to get
the information directly from the people who are stuck at
that particular location. This calls for a secure and efficient
crowdsourcing model for traffic jam probability estimation.
The proposed blockchain-based crowdsourcing model satisfies
the required security constraints while ensuring a high level
of participation due to an incentive-based approach [34], [35],
[36]. A detailed system model explaining the steps involved

3

Fig. 1: System model for proposed framework

in our crowdsourcing approach has been presented in the
following section.

III. SYSTEM MODEL

Fig. 1 illustrates the steps involved in the proposed model.
The vehicles belong to the same blockchain network and are
allowed to enter or leave the network at any given time. Owing
to the use of resource-constrained mobile devices for running
the ethereum wallet application and executing transactions,
the generic proof-of-work consensus algorithm is not suitable
for our model. Therefore, we deploy the proof-of-authority
consensus algorithm in our model to validate the data as
well as the transactions. A set of specialized nodes in the
network with comparatively higher computation power act
as authorities to validate the data. The steps involved in the
execution of the framework are as follows:

1. An account is created as soon as a vehicle seeks to enter
or participate in the network. Each account is associated
with a unique set of account address, private key, and
public key. The data shared by any user on the network is
digitally signed using the allocated private key to prevent
the issue of non-repudiation.

2. Whenever a user encounters an unusual situation on the
road, the user may decide to share the incident on the
network. The shared information will include some basic
parameters such as the type of road, condition of the road,
event or incident observed, or any other relevant detail.

3. The smart contract deployed on the network verifies all
the events specified by the users and multiple entries for
the same event from different users confirms the authen-
ticity of the event. To ensure that the same users do not
submit repeated information for monetary benefits, only
the first user to share unique information is awarded some
tokens. This motivates the users to share the information
as accurately and as early as possible.

4. The verified information is passed through the Long Short
Term Memory (LSTM) [37] neural network to predict
the probability of traffic jam at a particular location at a
particular time.

5. The historical data is also taken into account while
calculating the probability of traffic jam. Historical data
analysis is done in advance using a 3-layer feed-forward
artificial neural network (ANN).

6. The probability estimates from both the models are com-
bined to generate the final traffic jam probability estimate.

7. Any user in the network can request a traffic jam prob-
ability estimate of a particular location at any instance
of time by making use of the earned tokens. Algo. 2
lists all the steps involved in final traffic jam probability
estimation.

8. As a future extension of this work, we plan to introduce
a feature that suggests alternative routes to the user based
on the current probability estimate of a traffic jam at
different locations.

The following section discusses the proposed network model
and the mathematics behind the traffic jam probability calcu-
lation in detail.

IV. PROPOSED NETWORK MODEL

Consider a set of vehicles V = {V1, V2, V3, . . . , Vi, . . . , Vn}
where n denotes the total number of vehicles in our blockchain
network. Any vehicle, Vi 2 V , can either request for the
traffic jam probability of a certain location at a specific time,
or, offer its own location information in exchange for some
tokens. In our work, two models, namely, Live Data-Based
Probability Estimation (LDBPE) and Historical Data-Based
Probability Estimation (HDBPE), have been used for traffic
jam probability estimation, since both, live and historical
data can provide useful insights into the traffic intensity at
a particular location.

A. LDBPE using an LSTM Neural Network
Consider a day to be divided into 48 equal timeslots (30

minutes each). The set of vehicles offering their location in-
formation during a specific timeslot t, from a specific location
l can be represented using:

Vt

l
= {V1, V2, . . . , Vk, . . . , Vm} (1)

4

TABLE II: Values of !, �, and ⇡

Type Of Road (!)

Expressway
National Highway

State Highway
Major District Road
Other District Road

Rural Road

Road condition (�)

Smooth
Moderate

Poor
Extremely Bad

Event on the Road (⇡)

Construction
Accident

Barricades
Toll Booth

Demonstrations or Protests
Marathon

Others

where t 2 [1, 48]. Each vehicle, Vk 2 Vt

l
, sends its location

information vector, �k, which can be represented using:

�k = {Tk, lk, vk,↵k,!k, �k,⇡k} (2)

where Tk �! Timestamp of the vehicle Vk,
lk �! Location of the vehicle Vk,
vk �! Velocity of the vehicle Vk,
↵k �! Anticipated Duration of Slowness on the road (in
minutes) as given by the vehicle Vk,
!k �! Type of Road as given by the vehicle Vk,
�k �! Condition of the Road as given by the vehicle Vk,
⇡k �! Special event on the road (if any) as given by the vehicle
Vk.
All individual location information vectors, as sent by the
vehicles Vk 2 Vt

l
must be aggregated to form a single live data

vector for estimating the traffic jam probability at a particular
location during a specific timeslot. The live data vector, ⇤t

l
,

can be represented as:

⇤t

l
=
�
µt

l
, st

l
,⌦l

t
,�t

l
,⇧t

l

(3)

where
µt

l
=

P
m

k=1 vk
m

(4)

represents the average velocity of vehicles at location l during
timeslot t, and

st
l
=

P
m

k=1 ↵k

m
(5)

represents the average anticipated duration of slowness at
location l. The type of road, condition of the road, and
any special event occurring on the road, as given by the
maximum number of vehicles are represented by ⌦t

l
, �t

l
and

⇧t

l
respectively. This vector is then fed into the LSTM neural

network for estimating live traffic jam probability of that
location at that particular timeslot.

B. HDBPE using a 3-Layer Feed Forward Neural Network
It is essential to incorporate historical data in the probability

estimation of traffic jams since it can provide excellent insights

into the traffic intensity trends. In our work, a simple three-
layer feed-forward ANN has been used for HDBPE.

C. Training a Neural Network
For implementing any supervised machine learning or deep

learning model, there is a need to train the model before
deploying it to make predictions on new data. For LSTM
neural network, all the examples in our training dataset include
5 input features (dependent variables): 1) the average velocity
(µi), 2) the anticipated duration of slowness (si), 3) the type
of road (⌦i), 4) the condition of the road (�i), 5) special
event on the road if any (⇧i) and an output label (independent
variable) yi. In the case of feed-forward ANN, the input
features include: 1) Timeslot of the day, ⌧ , 2) day of the week,
Dw, 3) day of the month, Dm, and 4) month of the year, M,
and an output label yi. For both our models, the output label
yi can take only two values:

yi =

⇢
1 if traffic jam
0 if no traffic jam (6)

After pre-processing the data, the training dataset is split
into mini-batches consisting of S examples. If N denotes the
total number of examples in the training set, then:

Q =

&
N
S

'
(7)

denotes the total number of mini-batches formed. Let ✓t
represent the parameter vector at batch-timestep t, i.e., the
vector comprising of all the weight matrices and bias vectors
associated with the neural network during the tth mini-batch.

In our work, we have used the Adam optimization algorithm
[38] over the traditional stochastic gradient descent method
to update network weights iteratively (refer algo. 1). Adam
is an extension of stochastic/mini-batch gradient descent and
provides the benefits of both AdaGrad and RMSprop [39].
Adam algorithm requires us to maintain two additional vec-
tors: first-moment vector, ft, and second-moment vector, st, at
each batch-timestep t. Initially, both the first and the second-
moment vector are assigned null values:

f0 = 0, s0 = 0 (8)

After random initialisation of all the weights and biases, our
model makes predictions for each example of the first mini-
batch. A cost function J(✓) is then used to calculate the error
in the predictions made by our model. If p(yi) denotes the
probability outcome of a traffic jam as given by our prediction
model, then the log loss (also known as binary cross-entropy)
cost function can be calculated as:

J(✓) = � 1

S

SX

i=1

yi ⇤ log (p (yi)) + (1� yi) ⇤ log (1� p (yi))

(9)
where,

0  p(yi)  1 (10)

Since a cost function should penalize wrong predictions, the
function established in the equation (9) works very well for
our model. For each example with yi = 1, it adds the negative

5

log probability of the occurrence of a traffic jam to the
function, i.e. if our model outputs a low probability of a traffic
jam occurring, then the negative log probability will be high
which will increase the value given by cost function and vice
versa. After our model is trained on the whole mini-batch, the
gradient of error is calculated with respect to all the parameters
in the parameter vector ✓t using the following equation:

gt =
@J(✓)

@✓t
=

1

S

SX

i=1

@Ji
@✓t

(11)

Algorithm 1 Training a Neural Network using Adam Opti-
mizer
Input: Specified number of Epochs E , Training Dataset with
N training examples, Batch Size S , Step Size , Exponential
decay rates for moment estimates ⇢1 and ⇢2, Small constant
% for numerical stabilisation, Initial Parameter Vector ✓0
Output: Final Parameter Vector, ✓final

1: Calculate the number of batches, Q = N
S

2: Initialise all the weight and bias matrices with random
weights and biases respectively.

3: Initialise 1st and 2nd moment vector; f0 = 0, s0 = 0
4: Initialise batch-timestep t = 0
5: for each epoch 2 (1, E) do
6: for each mini-batch 2 (1,Q) do

Forward Pass
7: for each training example i 2 (1,S) do
8: Use Procedure 1 (for LSTM neural

network) or Procedure 2 (for feed-forward
neural network) to make predictions for each
example of the current mini-batch.

9: end for
10: Use equation (9) to compute the cost function (log

loss) with the current values of parameters.
11: Update batch-timestep, t = t+ 1.
12: Compute the gradient for all the weights and biases

in the parameter vector ✓t, using the formula
established in equation (11).

13: Update biased first and second moment estimate
using equations (12) and (13) respectively.

14: Compute bias-corrected first and second moment
estimate using equations (15) and (16) respectively.

15: Use equation (17) to update all the parameters in
parameter vector ✓t.

16: end for
17: end for

The gradient, gt, is then used to update the biased first and
second moment estimates based on the following equations:

ft = ⇢1 ⇤ ft�1 + (1� ⇢1) ⇤ gt (12)

st = ⇢2 ⇤ st�1 + (1� ⇢2) ⇤ (gt)2 (13)

where ⇢1 and ⇢2 denote the exponential decay rates for
moment estimates.

0  ⇢1, ⇢2 < 1 (14)

Following this, bias-corrected first moment estimate f̂t and

second moment estimate ŝt are calculated.

f̂t =
ft

1� (⇢1)t
(15)

ŝt =
st

1� (⇢2)t
(16)

Finally, the weights and biases present in the parameter vector
✓t are updated using the following equation:

✓t = ✓t � 
f̂tp
ŝt + %

(17)

where  is the step size and % is a small constant (in the order
of 10�8) used for numerical stabilisation.

D. Working of the LSTM Neural Network to make predictions

In recent times, LSTM neural networks have emerged as one
of the most suitable approaches for short term traffic forecast
[40], [41]. To ensure reliable results, we have used a 3-layer
stacked LSTM (refer fig. 2) for our problem. However, to
prevent overfitting of the model on the training dataset, we add
dropout regularisation between the LSTM layers [42]. Figure 2
shows the working and interaction of three LSTM cells across
three LSTM layers.

Each input vector, Xi, consisting of all the input features,
passes through the LSTM cells present in all the LSTM layers
before passing through the neurons in the final output layer.
The gates responsible for the working of an LSTM cell are
briefly explained below:

Forget Gate: The forget gate takes two input values - the
previous hidden state, Hi�1, and the current input vector,
Xi. The input values are multiplied by the weight matrices,
following which a bias present in the bias vector, Bf , is added.
The resultant value is passed through the sigmoid function,
which outputs a value in the range of 0 and 1. The values
closer to 0 are forgotten, while the values closer to 1 are kept.

fi = �(Xi ⇤ U i

f
+Hi�1 ⇤Wi

f
+ Bi

f
) (18)

0  fi  1 (19)

Input Gate: The input gate is responsible for updating
information in the cell state. The steps involved while
updating the cell state are as follows:

ci = tanh(Xi ⇤ U i

c
+Hi�1 ⇤Wi

c
+ Bi

c
) (20)

Ci = fi ⇤ Ci�1 + Ii ⇤ ci (21)

Ii = �(Xi ⇤ U i

i
+Hi�1 ⇤Wi

i
+ Bi

i
) (22)

Output Gate: The output gate is responsible for
determining the hidden state, Hi for the next timestep. The
hidden state consists of all information about the previous
inputs and is required to make predictions. Finding the hidden
state for the next timestep is a two-step process:

Oi = �(Xi ⇤ U i

o
+Hi�1 ⇤Wi

o
+ Bi

o
) (23)

Hi = Oi ⇤ tanh(Ci) (24)

A vector consisting of hidden states of all the LSTM cells in

6

tanh

tanh tanh

tanh

tanh

tanhσ σ σ σσσ σ σσ

tanh

tanh tanh

tanh

tanh

tanhσ σ σ σσσ σ σσ

tanh

tanh tanh

tanh

tanh

tanhσ σ σ σσσ σ σσ

x
t-1

x
t

x
t+1

h
t-2

c
t-2

c
t-2

c
t-2

c
t+1

h
t-2

h
t-2

h
t+1

h
t+1

h
t+1

c
t+1

c
t+1

!"#$%&'(!)*'+&%%'"#'(,-&.'/

!"#$%&'(!)*'+&%%'"#'(,-&.'0

!"#$%&'(!)*'+&%%'"#'(,-&.'1

2"33&#'45,5&'67','(!)*'+&%%'"#'8.&+&3"#$'%,-&.'9&+6:&4'

5;&'"#8<5'67'5;&'4<94&=<'%,-&.
h
t-1

h
t+1

h
t-1

h
t

h
t

h
t+1

),#;'>+5"?,5"6#'@<#+5"6#

σ !"$:6"3'>+5"?,5"6#'@<#+5"6#

tanh

Fig. 2: Stacked LSTM Neural Network

the first LSTM layer at timestep i acts as the input X [2]
i

for
LSTM cells in the next LSTM layer in the same timestep. If
there are b number of LSTM cells in the first LSTM layer,
then:

F [1]
i

= (H1
i
,H2

i
, . . . ,Hb

i
) (25)

X [2]
i

= F [1]
i

(26)

Similarly, for the third LSTM layer,

X [3]
i

= F [2]
i

(27)

Finally, the hidden state vector of the final LSTM layer is
fed into the output layer, which uses the sigmoid activation
function to map the prediction as a probability between (0, 1).

�(x) =
1

1 + e�x
(28)

The final prediction made by our model can be mathematically
modelled as:

p(yi) = �(F [3]
i

⇤ Gi + Ei) (29)

where Gi and Ei represent the output layer weight matrix and
bias vector at timestep i respectively.

E. Working of the feed-forward ANN

In a feed-forward ANN, output prediction of any example
depends only on the current set of input features. Therefore,
working of a cell in a feed-forward ANN is relatively simpler
as compared to that of an LSTM cell. Suppose we have to
make a prediction on an input vector, Xi:

Xi = {⌧,Dw,Dm,M} (30)

Initially, this input vector, Xi, passes through the first hidden
layer. In each cell of the first hidden layer, the input vector is
multiplied by the weight matrices of the respective cells, after

Procedure 1 Working of the LSTM Neural Network to make
predictions
Input: Previous Cell Memory Ci�1, Previous Cell Output/
Hidden State Hi�1, Current Input Vector Xi, LSTM layer
weight matrices for the current iteration U i

f
, Wi

f
, U i

c
, Wi

c
, U i

p
,

Wi

p
, U i

o
, Wi

o
, LSTM layer bias vectors for the current iteration

Bi

f
, Bi

c
, Bi

p
, Bi

o
, Output layer weight matrix Gi and bias vector

Ei for the current iteration
Output: Probably outcome for the current example p(yi)

for each LSTM layer k 2 LSTM neural network do
for each cell 2 LSTM layer k do

1. Forget Gate
fi = �(Xi ⇤ U i[k]

f
+Hi�1 ⇤Wi[k]

f
+ Bi[k]

f
)

2. Input Gate
Ii = �(Xi ⇤ U i[k]

p +Hi�1 ⇤Wi[k]
p + Bi[k]

p)
ci = tanh(Xi ⇤ U i[k]

c +Hi�1 ⇤Wi[k]
c + Bi[k]

c)

3. Cell State
Ci = fi ⇤ Ci�1 + Ii ⇤ ci
4. Output Gate
Oi = �(Xi ⇤ U i[k]

o +Hi�1 ⇤Wi[k]
o + Bi[k]

o)
Hi = Oi ⇤ tanh(Ci)

end for
Create a vector of hidden states given by the cells of the
current LSTM layer, F [k]

i
= (H1

i
,H2

i
, . . . ,Hj

i
, . . . ,Hb

i
)

where Hj

i
denotes the hidden state output of the jth cell

in the kth LSTM layer.
Initialise input vector, Xi for the next LSTM layer as the
current hidden states vector, F [k]

i
:

Xi = F [k]
i

end for
Let Final Layer Hidden State Vector, Fi = F [k]

i

Final Ouput Layer
p(yi) = �(Fi ⇤ Gi + Ei)

7

which the corresponding bias vectors are added.

Zi = Xi ⇤W [k]
i

+ B[k]
i

(31)

To limit the vanishing gradient problem, each hidden layer
in our model uses a Rectified Linear Unit (ReLU) activation
function, which can be mathematically modelled as:

R(x) = max(0, x) (32)

The final output, Ai, from each cell is given as:

Ai = max(0,Zi) (33)

A vector consisting of the outputs from the first hidden layer,
O[1]

i
acts as the input vector for the second hidden layer. If

there are m number of cells in the first hidden layer, then:

O[1]
i

= (A1
i
,A2

i
, . . . ,Am

i
) (34)

X [2]
i

= O[1]
i

(35)

Similarly, for the third hidden layer:

X [3]
i

= O[2]
i

(36)

Procedure 2 Working of the Feed-Forward ANN to make
predictions
Input: Current Input Vector Xi, Hidden layer weight matrices
and bias vectors for the current iteration, Output layer weight
matrix Gi and bias vector Ei for the current iteration
Output: Probably outcome for the current example p(yi)

for each hidden layer k 2 Feed-Forward ANN do
for each cell 2 hidden layer k do

Zi = Xi ⇤W [k]
i

+ B[k]
i

Ai = max(0,Zi)
end for
Create a vector Oi, consisting of outputs from the
cells in the current hidden layer:
Oi = (A1

i
,A2

i
, . . . ,Aj

i
, . . . ,Am

i
) where Aj

i
denotes

the output from the jth cell in the current hidden
layer.
Initialise the input for the subsequent input layer as the
output vector of the current hidden layer:
Xi = Oi

end for
Final Output Layer
p(yi) = �(Oi ⇤ Gi + Ei)

Finally, the vector O[3]
i

, consisting of final hidden layer cell
outputs, passes through the output layer which uses a sigmoid
activation function to output a probability. If Gi and Ei denote
the weight and bias vector for the output layer respectively,
then,

p(yi) = �(O[3]
i

⇤ Gi + Ei) (37)

F. Combining the two probabilities to give a final estimation
Any vehicle at a given time would request for location

information of a particular place. Using the data received
from the vehicles in that same place during that time, we

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
C

a
rs

Day of the Week

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

Location 7

Location 8

0

2000

4000

6000

8000

0 5 10 15 20

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

a
rs

Hours of The Day

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

Location 7

Location 8

Fig. 3: Traffic Insights obtained from the Historical Data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

L
o

g
 L

o
ss

Epoch

RNN with tanh

LSTM

GRU

Fig. 4: Comparison of LSTM with other RNNs on our dataset

will use our LSTM network to output a traffic jam probability
PLDBPE . Time of the day, the month of the year, day of the
week, day of the month will be extracted from the current
timestamp, which will act as the input for our feed-forward
ANN. Our feed-forward ANN will make a prediction on this
input PHDBPE . However, instead of sending two different
probability outcomes to the requesting user, we will combine
these two probabilities by performing conflation on the two
probability outcomes to achieve a single output probability
[43]. Conflation is an optimal method for consolidating data
from independent sources that measure the same physical

8

quantity in an unbiased manner. To calculate the conflated
probability, the probabilities from different sources, in this
case, PLDBPE and PHDBPE , are multiplied and then renor-
malized [43].

Pfinal =
PLDBPE ⇤ PHDBPE

PLDBPE ⇤ PHDBPE + (1� PLDBPE) ⇤ (1� PHDBPE)
(38)

Conflation has been chosen over other bayesian methods for
consolidating probabilities since the conflation of probabilities
a) preserves the proportionality of likelihoods, and b) mini-
mizes the maximum loss of Shannon information.

Algorithm 2 Traffic Jam Probability Estimation based on
Blockchain and Deep Neural Networks
Input: Request from a vehicle for traffic jam probability in
location l at timeslot t.
Output: Final Probability Estimation of traffic jam at location
l during timeslot t, pt

l

1: Obtain location information from all the vehicles willing
to send the information.

2: Assign few tokens to all the vehicles sending their location
information vector �k.

3: Encapsulate the individual location information vectors
into one live data vector ⇤t

l
.

4: Feed the vector to our LSTM network for LDBPE,
PLDBPE .

5: Feed the current timestamp into the feed-forward ANN
for HDBPE, PHDBPE .

6: Use equation (38) to estimate the final traffic jam proba-
bility for the current timeslot at the location l, pt

l
.

7: Use our HDBPE model to estimate the probabilites of the
next two timeslots, pt+1

l
and pt+2

l
.

8: Provide the requesting vehicle with the current traffic jam
probability estimate as well as the traffic jam probability
estimate for the next two timeslots (using just HDPBE).

V. NUMERICAL ANALYSIS AND RESULTS

A. Simulation Settings
The LSTM has been implemented in python via the use of

Keras framework on top of Google’s TensorFlow, whereas the
three-layer ANN has been implemented using the TensorFlow
framework alone. To determine the best parameter values
(batch size and number of epochs), we applied 10 fold cross-
validation using the GridSearchCV class from the sklearn
module in python. For our LSTM network, the optimal batch
size and the number of epochs came out to be 28 and 47
respectively, whereas for our feed-forward ANN, batch size
of 31 and 16 epochs provided highly accurate results with
low loss (refer fig. 6). Furthermore, following the popular
choice of step size, we have selected the step size as 0.001.
For exponential decay rates, we have chosen the suggested
default values of 0.9 and 0.999 for fast convergence.

B. Performance Evaluation
Some of the graphs obtained from the analysis of historical

data are shown in fig. 3. These offer useful insights into

0

20

40

60

80

100

120

140

0 50 100 150 200

T
im

e
 D

u
ra

ti
o

n
 (

in
 m

in
u

te
s)

Distance Travelled (in kms)

Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Vehicle 5

(a) Participation in Existing Crowdsourcing Model

0

20

40

60

80

100

120

140

0 50 100 150 200

T
im

e
 D

u
ra

tio
n

 (
in

 m
in

u
te

s)

Distance Travelled (in kms)

Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Vehicle 5

(b) Participation in Proposed Crowdsourcing Model

Fig. 5: Comparison of the Participation Level in Proposed
Model and Existing Model

the patterns of traffic volume at different days of the week
and at different times of the day. It can be concluded from
the graphs that weekdays usually have higher traffic than
weekends, especially in the morning and evening hours.

Fig. 4 compares the losses given by three different RNNs
trained on our dataset. As it can be seen from the graph, LSTM
and the Gated Recurrent Unit (GRU) outperform the vanilla
RNN. Although both LSTM and GRU manage to achieve
a low log loss, LSTM is able to do so consistently and is,
therefore, the best option for our model.

Fig. 5 demonstrates that most vehicle owners used the
existing architecture to look at traffic data only at the beginning
or at the end of their journey, with only a few of them using
the application for a long time. However, due to the added
incentive, the same vehicle owners participated for an extended
period of time in our model by sending location information
regularly.

Fig. 6 evaluates the performance of different optimizers
for the same feed-forward ANN. RMSProp achieves a 100%
accuracy on the training dataset, but its low validation accuracy
and high validation loss indicate that it overfits on the training
dataset. While SGD does not achieve high accuracy on the

9

Fig. 6: Comparison of Adam with other Optimizers for our Feed Forward ANN

training dataset, its high validation accuracy and low validation
loss indicate that it performs well on the validating dataset.
However, among all the optimizers on our dataset, Adam is
the clear winner as it achieves high validation accuracy and
low validation loss while being able to converge faster.

VI. CONCLUSION

In light of the two fundamental limitations of existing
crowdsourcing models, namely, privacy issues and lack of
motivation, in this paper, we proposed a blockchain-based
crowdsourcing-model for traffic jam probability estimation. As
a part of our blockchain network, the user can earn tokens
by sharing live traffic information with the network and can
later use these tokens for obtaining traffic information from the
network. We employed an LSTM neural network for live data
based probability estimation of traffic jam while incorporating
results from a feed-forward ANN trained on historical data.
The results show that our model achieves a higher level of
participation from the users due to the added incentive, which
consequently resulted in highly accurate results.

REFERENCES

[1] J. Ni, X. Lin, K. Zhang, and X. Shen, “Privacy-Preserving Real-Time
Navigation System Using Vehicular Crowdsourcing,” in 2016 IEEE 84th
Vehicular Technology Conference (VTC-Fall), Sep. 2016, pp. 1–5.

[2] B. Xie, Y. Chen, and M. Xu, “Evaluating urban traffic jam based on
a urban cell transmission model (UCTM),” in 2012 12th International
Conference on ITS Telecommunications, Nov 2012, pp. 211–215.

[3] M. Lab, “U.S. is the world leader in traffic jams – USA Today,”
Nov 2019. [Online]. Available: https://mobilitylab.org/2018/02/06/
u-s-is-the-world-leader-in-traffic-jams/

[4] T. James, “How to cut traffic jams,” Engineering & Technology,
vol. 8, no. 1, pp. 44–47, February 2013.

[5] J. Long, Z. Gao, P. Orenstein, and H. Ren, “Control strategies for
dispersing incident-based traffic jams in two-way grid networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp.
469–481, June 2012.

[6] X. Wan, H. Ghazzai, and Y. Massoud, “Mobile crowdsourcing for
intelligent transportation systems: Real-time navigation in urban areas,”
IEEE Access, vol. 7, pp. 136 995–137 009, 2019.

[7] X. Zhang, Z. Yang, and Y. Liu, “Vehicle-based bi-objective crowdsourc-
ing,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 10, pp. 3420–3428, Oct 2018.

[8] Thomas, “Crowdsourcing from its beginnings to the present,” Sep
2018. [Online]. Available: https://www.clickworker.com/2018/04/04/
evolution-of-crowdsourcing/

[9] R. Panko, “The popularity of Google maps: Trends in navigation apps
in 2018,” Mar 2018. [Online]. Available: https://www.themanifest.com/
app-development/popularity-google-maps-trends-navigation-apps-2018

[10] R. Greenfield, “Why Waze is worth more than 1 billion,” Oct
2013. [Online]. Available: https://www.theatlantic.com/technology/
archive/2013/05/waze-google-1-billion/314914/

[11] A. DelColle, “Inside Waze’s volunteer workforce,” Nov 2017.
[Online]. Available: https://www.popularmechanics.com/technology/
a15624/waze-volunteer-work-force/

[12] A. Stefanidis, A. Crooks, and A. Croitoru, “How
Google’s geo-crowdsourcing is transforming the map,” Jan
2015. [Online]. Available: https://www.citymetric.com/horizons/
how-googles-geo-crowdsourcing-transforming-map-626

[13] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering, “Visual
traffic jam analysis based on trajectory data,” IEEE tran. on visualization
and computer graphics, vol. 19, no. 12, pp. 2159–2168, 2013.

[14] M. Won, T. Park, and S. H. Son, “Toward mitigating phantom jam using

10

vehicle-to-vehicle communication,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 5, pp. 1313–1324, 2016.

[15] K.-C. Chu, R. Saigal, and K. Saitou, “Real-time traffic prediction and
probing strategy for lagrangian traffic data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 2, pp. 497–506, 2018.

[16] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on IoT security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, July 2019.

[17] B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and
S. H. Ahmed, “Performance limits of visible light-based positioning for
internet-of-vehicles: Time-domain localization cooperation gain,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

[18] S. Garg, K. Kaur, S. Batra, G. Kaddoum, N. Kumar, and A. Boukerche,
“A multi-stage anomaly detection scheme for augmenting the security
in iot-enabled applications,” Future Generation Computer Systems, vol.
104, pp. 105–118, 2020.

[19] V. Hassija, G. Bansal, V. Chamola, V. Saxena, and B. Sikdar, “Block-
Com: A blockchain based commerce model for smart communities
using auction mechanism,” in 2019 IEEE International Conference on
Communications Workshops (ICC Workshops), May 2019, pp. 1–6.

[20] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan,
“A hybrid deep learning-based model for anomaly detection in cloud
datacenter networks,” IEEE Transactions on Network and Service Man-
agement, vol. 16, no. 3, pp. 924–935, Sep. 2019.

[21] Chen, Jianing and Wu, Jun and Liang, Haoran and Mumtaz, Shahid
and Li, Jianhua and Konstantin, Kostromitin and Bashir, Ali Kashif and
Nawaz, Raheel, “Collaborative trust blockchain based unbiased control
transfer mechanism for industrial automation,” IEEE Transactions on
Industry Applications, 2019.

[22] V. Hassija, V. Chamola, G. Han, J. Rodrigues, and M. Guizani, “DA-
GIoV: A framework for vehicle to vehicle communication using directed
acyclic graph and game theory,” IEEE Transactions on Vehicular Tech-
nology, 2020.

[23] S. Garg, K. Kaur, S. Batra, G. S. Aujla, G. Morgan, N. Kumar, A. Y.
Zomaya, and R. Ranjan, “En-ABC: An ensemble artificial bee colony
based anomaly detection scheme for cloud environment,” Journal of
Parallel and Distributed Computing, vol. 135, pp. 219–233, 2020.

[24] V. Hassija, V. Chamola, D. Nanda Gopala Krishna, and M. Guizani,
“A distributed framework for energy trading between UAVs and charg-
ing stations for critical applications,” IEEE Transactions on Vehicular
Technology, 2020.

[25] D. G. Kogias, H. C. Leligou, M. Xevgenis, M. Polychronaki, E. Kat-
sadouros, G. Loukas, R. Heartfield, and C. Z. Patrikakis, “Toward a
blockchain-enabled crowdsourcing platform,” IT Professional, vol. 21,
no. 5, pp. 18–25, Sep. 2019.

[26] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang, and
R. H. Deng, “CrowdBC: A blockchain-based decentralized framework
for crowdsourcing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 6, pp. 1251–1266, June 2019.

[27] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, “A blockchain-
powered crowdsourcing method with privacy preservation in mobile
environment,” IEEE Transactions on Computational Social Systems,
vol. 6, no. 6, pp. 1407–1419, Dec 2019.

[28] V. Hassija, V. Chamola, S. Garg, N. G. K. Dara, G. Kaddoum, and
D. N. K. Jayakody, “A blockchain-based framework for lightweight data
sharing and energy trading in V2G network,” IEEE Transactions on
Vehicular Technology, 2020.

[29] P. Tague, S. Nabar, J. A. Ritcey, and R. Poovendran, “Jamming-aware
traffic allocation for multiple-path routing using portfolio selection,”
IEEE/ACM Transactions On Networking, vol. 19, pp. 184–194, 2010.

[30] Z. He, L. Zheng, L. Song, and N. Zhu, “A jam-absorption driving strat-
egy for mitigating traffic oscillations,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 4, pp. 802–813, 2016.

[31] L. Jia, Y. Xu, Y. Sun, S. Feng, L. Yu, and A. Anpalagan, “A game-
theoretic learning approach for anti-jamming dynamic spectrum access
in dense wireless networks,” IEEE Transactions on Vehicular Technol-
ogy, vol. 68, no. 2, pp. 1646–1656, 2018.

[32] N. Lyamin, D. Kleyko, Q. Delooz, and A. Vinel, “AI-based malicious
network traffic detection in VANETs,” IEEE Network, vol. 32, no. 6,
pp. 15–21, 2018.

[33] Z. Chen, Y. Jiang, D. Sun, and X. Liu, “Discrimination and prediction of
traffic congestion states of urban road network based on spatio-temporal
correlation,” IEEE Access, 2019.

[34] V. Hassija, V. Saxena, and V. Chamola, “Scheduling drone charging for
multi-drone network based on consensus time-stamp and game theory,”
Computer Communications, 2019.

[35] X. Lin, J. Wu, S. Mumtaz, S. Garg, J. Li, and M. Guizani, “Blockchain-
based on-demand computing resource trading in IoV-assisted smart city,”
IEEE Transactions on Emerging Topics in Computing, 2020.

[36] V. Hassija, V. Saxena, and V. Chamola, “A mobile data offloading
framework based on a combination of blockchain and virtual voting,”
Software: Practice and Experience, 2020.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[40] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network:
a deep learning approach for short-term traffic forecast,” IET Intelligent
Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.

[41] Yuan-yuan Chen, Y. Lv, Z. Li, and F. Wang, “Long short-term memory
model for traffic congestion prediction with online open data,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), Nov 2016, pp. 132–137.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[43] T. Hill, “Conflations of probability distributions,” Transactions of the
American Mathematical Society, vol. 363, no. 6, pp. 3351–3372, 2011.

Vikas Hassija received the B.Tech. degree from
Maharshi Dayanand University, Rohtak, India, in
2010, and the M.S. degree in telecommunications
and software engineering from the Birla Institute
of Technology and Science (BITS), Pilani, India, in
2014. He is currently pursuing the Ph.D. degree in
IoT security and blockchain with the Jaypee Institute
of Information and Technology (JIIT), Noida, where
he is currently an Assistant Professor. His research
interests include the IoT security, network security,
blockchain, and distributed computing.

Vatsal Gupta is currently pursuing a B.Tech. degree
from the Jaypee Institute of Information Technology
(JIIT), Noida. He has completed a few projects in the
field of blockchain applications, machine learning
and data analytics. He is currently (the summer of
2020) pursuing his research internship at the Birla
Institute of Technology and Science (BITS), Pilani
under Dr. Vinay Chamola. His research interests
include distributed ledger technology, machine learn-
ing and deep learning.

11

Sahil Garg received his Ph.D. degree from the
Thapar Institute of Engineering and Technology,
Patiala, India, in 2018. He is currently working as a
post-doctoral research fellow at École de technologie
supérieure, Université du Québec, Montréal, Canada.
He has many research contributions in the area of
machine learning, big data analytics, security &
privacy, internet of things, and cloud computing. He
has over 50 publications in high ranked Journals
and Conferences, including 25+ IEEE Trans./Journal
papers. He also received the IEEE ICC best paper

award in 2018 at Kansas City, Missouri. He serves as the Managing Editor
of Springer’s Human-centric Computing and Information Sciences (HCIS)
and Wiley’s International Journal of Communication Systems (IJCS). He also
serves as the Lead Guest Editor for special issue of IEEE Transactions on
Intelligent Transportation Systems, IEEE Transactions on Industrial Informat-
ics, IEEE Internet of Things Journal, IEEE Network, and Future Generation
Computer Systems (Elsevier). He has served as the workshop chair/publicity
co-chair for several conferences including IEEE Infocom, ACM Mobicom,
IEEE Globecom and IEEE ICC.

Vinay Chamola received the B.E. degree in elec-
trical and electronics engineering and master’s de-
gree in communication engineering from the Birla
Institute of Technology and Science, Pilani, India, in
2010 and 2013, respectively. He received his Ph.D.
degree in electrical and computer engineering from
the National University of Singapore, Singapore, in
2016. In 2015, he was a Visiting Researcher with the
Autonomous Networks Research Group (ANRG),
University of Southern California, Los Angeles, CA,
USA. He also worked as a post-doctoral research

fellow at the National University of Singapore, Singapore where he worked
in the area of Internet of Things. He is currently an Assistant Professor with
the Department of Electrical and Electronics Engineering, BITS-Pilani, Pilani
Campus where he heads the Internet of Things Research Group / Lab. He
has over 45 publications in high ranked SCI Journals including more than
25 IEEE Transaction and Journal articles. His works have been published in
Journals like IEEE Transactions on Communications, IEEE Transactions on
Vehicular Technology, IEEE Journal on Selected Areas in Communications,
IEEE Communications Magazine etc. Furthermore, his works have been
accepted and presented in reputed conferences like IEEE INFOCOM, IEEE
GLOBECOM, IEEE ICC, IEEE PerCom to name a few. He has also served as
a reviewer for several IEEE/Elsevier Journals. His research interests include
IoT Security, Blockchain, 5G network management and addressing research
issues in VANETs and UAV networks. He is an Associate Editor of the IET
Quantum Communications journal and also a Guest Editor in the Computer
Communication journal, Elsevier.

View publication statsView publication stats

https://www.researchgate.net/publication/341479647

